K63-Linked Tri-Ubiquitin (Phosphorylated) Cat. # SI6303P

Background	Ubiquitin chains are essential components in the study of protein degradation pathways, trafficking, and cellular signaling. These polymeric chains of ubiquitin molecules critically regulate protein stability, localization, and activity. K63-linked chains traditionally function in intracellular signaling, trafficking, and autophagy.
	Phospho-ubiquitin chains, a specialized class characterized by phosphorylation at serine 65, play a central role in mitophagy signaling pathways.
	K63 tri-ubiquitin (phosphorylated) consists of three wild-type ubiquitin monomers linked via isopeptide bonds between lysine 63 and the C-terminal glycine. These chains are enzymatically phosphorylated at the Ser65 residue.
Application(s)	 Investigation of phosphoubiquitin chain specificity and selectivity Study of phosphoubiquitin chains in protein degradation pathways (e.g., proteasomal and autophagic degradation) Analysis of phosphoubiquitin-mediated signaling pathways and cellular responses Structural elucidation of the architecture and dynamics of phosphoubiquitin chains

• Screening assays to identify modulators of phosphoubiquitin chain assembly and disassembly

Product Specifications

Тад	None
Purity	\geq 95% by HPLC-MS
Molecular Weight	25,766-25,926 Da (depending on the degree of phosphorylation)
Quantity	25 μg
Species	Human
Expression System	E. coli
Physical State	Liquid
Buffer	50 mM Tris-HCl, pH 7.5, 150 mM NaCl
Solubility	> 1mg/mL
Storage	-80° C. Avoid repeated freeze/thaw cycles

References

- 1. Madiraju, C.; Novack, J.P.; Red, J.C.; Matsuzawa, S-I. K63 Ubiquitination in Immune Signaling. Trends Immunol. 2022, 43, 148-162.
- Cao, L.; Liu, X.; Zheng, B.; Xing, C.; Liu, J. Role of K63-linked Ubiquitination in Cancer. Cell Death Discov. 2022, 8, 410.
- 3. Le Guerroué F., et al., Cell Death Differ, 2021;28(2):439-454.
- 4. Liu P., et al., Sci Signal, 2018; 5;11(533)
- 5. Swatek, K.N. & Komander, D. Ubiquitin Modifications. Cell Res. 2016, 26, 399-422.
- 6. Yau, R. & Rape, M. The increasing complexity of the ubiquitin code. Nature Cell. Bio. 2016, 18, 579-586.

All products are for research use only

Not intended for human or animal diagnostic or therapeutic uses Copyright © 2025 LifeSensors, Inc. All Rights Reserved